The purpose of this study was to determine whether T1- and T2-weighted GRAPPA sequences are equivalent to conventional sequences for the Nepicastat mouse evaluation of degenerative lumbar spine disease in terms of image quality and artefacts.
Methods In patients with clinically suspected degenerative lumbar spine disease two neuroradiologists independently compared sagittal GRAPPA (acceleration factor 2, time reduction approximately 50%) and non-GRAPPA images (25 patients) and transverse GRAPPA (acceleration factor 2, time reduction approximately 50%) and non-GRAPPA images (23 lumbar segments in six patients). Comparative analyses included the minimal diameter of the spinal canal, disc abnormalities, foraminal stenosis,
facet joint degeneration, lateral recess, nerve root compression and osteochondrotic vertebral and endplate changes.
Image inhomogeneity was evaluated by comparing the nonuniformity in the two techniques. Image quality was assessed by grading the delineation of pathoanatomical structures. Motion and aliasing artefacts were classified from grade 1 (severe) to grade 5 (absent).
Results There was no significant difference between GRAPPA and non-accelerated MRI in the evaluation of degenerative lumbar spine see more disease (P > 0.05), and there was no difference in the delineation of pathoanatomical structures. For inhomogeneity there was a trend in favour of the conventional sequences. No significant artefacts were observed with either technique.
Conclusion The GRAPPA technique can be used effectively to reduce scanning time in patients with degenerative lumbar spine disease while preserving image quality.”
“Introduction AZD8186 This study was performed to assess the effect of aneurysm geometry on parameters that may have an impact on the natural history of intracranial aneurysms, such as intraaneurysmal flow pressure and shear stress.
Methods Flow was simulated in 21 randomly selected aneurysms using finite volume modeling. Ten aneurysms were classified as side-wall aneurysms, with either
single-sided or circumferential involvement of the parent artery wall, and 11 as bifurcation aneurysms (symmetric or asymmetric), with an axis either perpendicular or parallel to the parent artery. The flow patterns were classified as either jet or vortex types (with regular or irregular vortex flow). Pressures and shear stresses were characterized as evenly or unevenly distributed over the aneurysm wall and neck.
Results All side-wall and four of the bifurcation aneurysms with a perpendicular axis had a vortex type flow pattern and seven bifurcation aneurysms with a parallel axis (four symmetric and two asymmetric) had a jet flow pattern. Jet type flow was associated with an uneven pressure distribution in seven out of seven aneurysms. Vortex type flow resulted in an even pressure distribution in five out of six aneurysms with an irregular flow pattern and six out of eight with a regular flow pattern.