Studies have shown that elevated reactive oxygen species (ROS) levels affect the quality of gametes. Mitochondrial mutations in different complexes of electron transport chain have been reported to disrupt the electron flow which lead to formation of more superoxide ions or increased levels of ROS. This study was aimed to screen the mitochondrial genome for variations in idiopathic POI (n = 25) and occult ovarian insufficiency (OI) (n = 5) patients. 30 patients diagnosed with POI and occult OI were enrolled in this study. Blood samples were collected from the patients and controls. DNA was extracted using phenol chloroform method. A total of 102 nucleotide variations were observed in patients as compared with
Selleck ALK inhibitor 58 nucleotide variations in controls. 24% variations were found to be non-synonymous and 76% were synonymous. It was found that 48% variations were in complex I, 8% in complex III, 24% in complex IV, and 20% in complex V of electron transport chain. We found most
of the non-synonymous mitochondrial variations in complex I (48%) of the respiratory chain which is the largest enzyme complex and is associated with oxidative stress. Some non-synonymous pathogenic alterations (p.M31T, p.W239C, p.L128Q) and non pathogenic alterations (ATPase6:p.T53I, ATPase6:p.L190F, ATPase6:p.L199L) were found to be significantly higher in cases as compared with controls. The preliminary data suggest that the mitochondrial mutations and subsequent decline in ATP levels may accelerate follicular atresia and lead selleck products to POI. The results of this preliminary study highlight the need to extend this study by analyzing large number of samples in different ethnic populations and analyze for ROS levels and mitochondrial mutations in
oocytes as they are of different embryonic origin and develop in a different microenvironment.”
“The paper reports the results of studies on the effect of glycerol content on thermal, mechanical, and dynamic mechanical properties of blends of starch and polyvinyl alcohol (PVA). Degree of crystallinity of the starch/PVA blends (4 g/4 g ratio) remains almost constant up to 3.78 g of glycerol as determined by differential scanning calorimetry (DSC) and x-ray diffraction studies. At higher loading of glycerol the crystallinity decreases. DTG thermograms revealed occurring BMS 345541 of one maximum degradation temperature closer to that of starch in blends containing up to 3.78 g of glycerol. At higher glycerol content there gradually occur two distinct peaks of maximum degradation temperature, one occurring close to that of starch and other occurring close to the PVA peak, indicating phase separation of the blend components. Results of stress-strain studies indicate lowering of tensile properties and energy at break particularly at higher glycerol content (beyond 3.78 g). Dynamic mechanical studies reveal a sharp drop in dynamic modulus at higher glycerol content at all temperatures.