After release of merozoites parasitic glycosylphosphatidylinositol (GPI) is released which induces a local inflammatory response involving natural killer and subsequently CD4+ T cells. At this stage of the infection, proinflammatory cytokines including tumor necrosis factor α (TNF-α interferon γ (IFN-γ and interleukin (IL)-1ß are produced locally before the entry of the systemic phase in which cytokines activate macrophages and CD8+ T cells [21]. In the systemic phase, more platelets and microparticles are released inducing perforin-mediated lesions in the endothelium
[21]. Recently, metabolic changes in the central nervous selleck chemicals system caused by the parasite, have been characterized as a third theory in explaining the pathology of malaria. During CM an increase of lactate and alanine concentration and alterations in tryptophane metabolites like the kynurenine pathway lead to an increased permeability of the blood brain barrier for plasma proteins. DHS has been recently validated as a druggable target by the small molecule CNI-1493, a synthetic guanylhydrazone [22], which significantly extends the survival rate of Plasmodium berghei ANKA-infected
C57BL/6 mice [22]. Initial studies with the compound suggested that the mechanism of action can be attributed to the inhibition of parasitic DHS and the translation of host specific TNFα-mRNA VX-809 in vitro [23], indicating a link between host cell proinflammatory cytokine production and the hypusine pathway. To study the outcome after an in vivo knockdown of this enzyme and its target protein eIF-5A in the erythrocytic stages of Plasmodium in more detail , we transfected siRNA constructs targeted to both genes based on in vitro knockdown experiments into P. berghei ANKA schizonts, using standard transfection
methods 5-Fluoracil concentration [24]. Results In vitro knock-down of P. falciparum DHS and eIF-5A by RNAi Two different DHS short hairpin RNAs (shRNAs), #43 and #176 (see Materials and Methods section), expressed from the pSilencer1.0-U6 vector were applied to knock down the DHS protein from P. falciparum. The shRNA #43 targets the dhs sequence at nucleotide positions 337–358, while shRNA #176 targets the dhs sequence at nucleotide positions 1269–1290 within the P. falciparum mRNA. Both constructs were individually cotransfected with plasmodial DHS expression vector into 293T cells to verify the expected degradation of the dhs transcript. The results obtained by RT-PCR analysis show a significant knock-down of plasmodial dhs transcript by the shRNA P #176 construct (Figure 1A, lane 4), as JQEZ5 opposed to when the shRNA P #43 was expressed (lane 5). By contrast, a control siRNA which lacks complementary sequences in the human genome did not negatively affect the abundance of the Plasmodium transcript with the expected size of 612 bp (amino acid positions 208–412) (lane 1).