g. Eggleton et al. 1997; Gathorne-Hardy et al. 2002; Donovan et al. 2007). Apart from Macrotermes gilvus, Borneo lacks termite species that are adapted to drier, disturbed conditions EVP4593 (Jones et al. 2003; Hassall et al. 2006) and so species are lost as habitat disturbance increases, but are not replaced
by others. We found that the functional group composition of ant communities varied with habitat degradation, in association with variables linked to disturbance. Of these, slope was positively associated with forest quality because steep slopes are less intensively logged. Overall, ant functional groups showed variable associations with habitat disturbance. Species within the functional groups of Opportunists and Dominant Dolichoderinae thrive in hot and open areas (Andersen 2000) and were most abundant in oil palm plantation—a very open and thermally favourable habitat. Cryptic species were more abundant in logged forest than old growth forest. This may be due to increased dead wood levels in logged forest compared with old growth forest (e.g. 50 % greater in Amazon forests; Palace et al. 2007) providing additional microhabitats. In contrast, occurrence of Specialist Predators and Generalised Myrmicinae was correlated with variables associated with old growth forest,
with Generalised Myrmicinae being numerically dominant in old growth forest. Generalised Myrmicinae are often outcompeted by Dominant Dolichoderinae in open areas. Greater shade tolerance may therefore allow Generalised Myrmicinae to escape PRI-724 supplier competition Selleck mTOR inhibitor inside forests (Andersen 2000).
This pattern of loss of forest specialist canopy ants and replacement by open-habitat species when forests are logged has been observed by Widodo et al. (2004). Specialist Predators may decline in modified habitats because they feed on prey such as termites, which are lost with disturbance. The Specialist Predator genera, Pachychondyla and Leptogenys, MycoClean Mycoplasma Removal Kit are believed to predate termites, and had highest occurrence rates in old growth forest and logged forest respectively. However, although some studies have considered foraging behaviour that includes termite predation (Maschwitz and Schönegge 1983; Wilson and Brown 1984; Johnson et al. 2003), there are few quantitative data for termite predation by ants in forest systems. Termite feeding group composition was strongly correlated with variation in habitat disturbance, with all groups being most abundant in old growth forest. The RDA analysis confirmed that factors associated with habitat disturbance were significantly associated with variation in feeding group structure. Degree of exoskeleton sclerotisation and therefore potential resistance to desiccation, decreases across feeding groups from groups I to IV, i.e. from dead wood to soil feeders (Eggleton et al. 1997). Humus feeders in Group III showed significant decreases in occurrence in disturbed habitats.