Immature (L(4)) O. equi were present in two horses and removals were 0% in one horse and 39% in the other. Eyeworms (Thelazia lacrymalis) were found in one horse at necropsy. Even though a small number of horses were used in the present research, the commonality of their background made them ideal candidates as a group for this study. This aspect helps strengthen the validity of the interpretation of the findings.”
“Curcumin (Cur), one of the most widely used natural active constituents with a great variety of beneficial biological
and pharmacological activities, is a practically water-insoluble substance with a short biologic half-life. The aim of this study was to develop a sustained-release solid dispersion by employing water-insoluble carrier cellulose Metabolism inhibitor acetate for solubility enhancement, release control, and oral bioavailability improvement of Cur. Solid dispersions were characterized by solubility, in vitro drug release, Fourier transform infrared spectroscopy, X-ray diffractometry, and differential scanning calorimetry studies. The in vivo performance was assessed by a pharmacokinetic study. Solid-state characterization techniques revealed the amorphous nature of Cur in solid
dispersions. Solubility/dissolution of Cur was enhanced in the formulations in comparison with pure drug. Sustained-release see more profiles of Cur from the solid dispersions were ideally controlled in vitro up to 12 h. The optimized formulation provided an improved pharmacokinetic parameter (C (max) = 187.03 ng/ml, t (max) = 1.95 h) in rats as compared with pure drug (C (max) = 87.06 ng/ml, t (max) = 0.66 h). The information from this study suggests that the developed solid dispersions successfully enhanced the solubility and sustained release of poorly water-soluble drug Cur, thus improving its oral bioavailability effectively.”
“In
this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes selleck inhibitor revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co))were successfully cloned in a heterologous host, Escherichia coil JM109. E. coli JM109 transformants harbouring pGEM’-phaC(Co)AB(Re) and pGEM’-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coil JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp.