It has been reported previously that these animals show no clinical signs of disease and only minor histopathological changes with a few acid fast bacteria in tissues [4, 5]. Such infected predators and scavengers are probably ‘dead-end hosts’ and are not high risk factors for interspecies transmission. Information pertaining to strain types can assist in designing and evaluating disease control programmes. It is beneficial to know the predominant strain type in a population or the virulence of a particular strain type particularly for developing new vaccines. Singh et al. [49] recently reported the effectiveness and advantage of using a vaccine based
on a local ‘bison-type’ strain. Conclusion In conclusion, this survey has helped to expand our knowledge to improve our understanding of the epidemiology of paratuberculosis. It is hoped that the information provided will facilitate future surveys and PI3K Inhibitor Library datasheet research strategies to resolve the outstanding epidemiological questions regarding this disease. The results of this study were in agreement with previous reports indicating that Map isolates comprise Mocetinostat supplier a relatively homogeneous population exhibiting little genetic diversity compared with other bacterial pathogens.
As a result it is necessary to use multiple genotyping techniques targeting different sources of genetic variation to obtain the level of discrimination necessary to investigate transmission dynamics and trace the source of infections. Identical genotypes were obtained from Map isolated from different host species co-habiting on the same Adenosine property strongly suggesting that interspecies transmission occurs. Interspecies transmission of Map between wildlife species and domestic livestock on the same farm provides further evidence to support a role for wildlife reservoirs of infection. However, in assessing the relative risk of transmission between wildlife and domestic livestock, distinction needs to be made between passive and active transmission as
well as the potential for contact. Methods Bacteria A total of 166 suspected Map isolates were obtained from the Czech Republic (n = 27), Finland (n = 5), Greece (n = 6), The Netherlands (n = 46), Selleckchem NVP-HSP990 Norway (n = 7), Scotland (n = 54) and Spain (n = 21) (Table 1 and see supplementary dataset in Additional file 1). The isolates from livestock species were obtained from animals showing symptoms of paratuberculosis and from various clinical samples (see supplementary dataset in Additional file 1) that were submitted to the various laboratories for diagnosis. In the case of isolates from wildlife species, these were isolated from wildlife on properties with a known history or current problem with paratuberculosis and these animals did not necessarily show any clinical signs. The isolates were cultured from 19 different host species (supplementary dataset in Additional file 1 and Additional file 2: Table S3).