Ratios for pairwise plus:minus cholesterol samples were calculated, and the mean ratios ± sem for (n) blots are given in blue. The null hypothesis that the ratio equals 1 was evaluated in a BGB324 price two-tailed Student t-test. In addition to Lewis antigen measurement, we directly compared the lipopolysaccharide profiles between parallel cultures grown in the presence or absence of cholesterol, using gel electrophoresis and silver staining. In all the H. pylori strains
we have examined, LPS band profiles were identical between cultures grown in defined medium with cholesterol to that obtained in serum-containing medium or on blood agar (data not shown), and as expected [5, 24, 55, 57] these profiles were highly strain-specific. On these gels, cholesterol-responsive LPS bands were most clearly resolved for the strain G27, a clinical isolate (Figures 7, 8). We confirmed that hot phenol extraction, which we included as an additional purification step, did not
alter any of the bands seen on these gels (Figure 7). These analyses reproducibly showed that G27 cultures grown in cholesterol-free medium exhibited at least three additional LPS bands (Figure 8 lanes 2, 5, arrows) that were absent or strongly diminished when cholesterol was provided in the growth medium (lanes 3, 6). These bands included one in the core region, one in the O-chain region, and a band with BAY 57-1293 order intermediate migration on the gel. The responsive band in the core region (bottom arrow) was absent in plus-cholesterol samples, although on some gels a faint neighboring band could be seen which always migrated somewhat more slowly. Addition of cholesterol to the culture at the end of the growth period Fenbendazole and prior to sample workup did not alter the LPS band profile (lane 1). Thus the observed band changes occurred biologically and not artifactually. This LPS response did not occur when the growth medium contained
an equimolar amount of synthetic βsitosterol (lane 4), which differs from cholesterol by a single ethyl group in the alkyl side chain. Similarly, two bile salts which are well tolerated by H. pylori, taurocholate and glycocholate, did not affect LPS profiles (lanes 7, 8). Certain other cholesterol-like substances that we attempted to test proved toxic toward H. pylori; these included dehydroepiandrosterone, β-estradiol, and progesterone, as well as 5-β-coprostanol, a compound occurring in the human gut and differing from cholesterol by one double bond in the steroid nucleus. These findings together indicated that the observed LPS modification was strongly specific for cholesterol. Figure 7 G27 LPS species are quantitatively recovered in purified preparations, and respond to cholesterol in the growth medium. In two independent experiments, parallel cultures of H. pylori strain G27 were grown overnight in defined medium without (-) or with (+) 50 μg/ml cholesterol.