Results are
expressed as means ± standard deviation (SD) and were compared using an unpaired Student’s t test. To determine the effectiveness of the sublingual immunization, mice were immunized with 25k-hagA, 25k-hagA-MBP, or PBS. Sublingual immunization with 25k-hagA-MBP induced significant serum IgG and IgA 7 days after the final immunization (Fig. 1a). In contrast, 25k-hagA-immunized and nonimmunized mice induced low or no detectable titers, respectively, after sublingual immunization. In addition, the serum IgG and IgA Ab responses XAV-939 price induced by 25k-hagA-MBP persisted for almost 1 year (Fig. 1b). When the subclasses of antigen-specific IgG antibodies induced by sublingual 25k-hagA or 25k-hagA-MBP
Y 27632 challenge were determined, all IgG subclasses were significantly enhanced in 25k-hagA-MBP group. On the other hand, 25k-hagA-immunized group showed a low level of IgG1 (and sparse IgG2b) (Fig. 1c). Sublingual immunization of 25k-hagA-MBP induced high levels of 25k-hagA-MBP-specific IgA Ab responses in saliva (Fig. 2a). In contrast, essentially no IgA was detected in the saliva of mice sublingually treated with 25k-hagA or PBS. The most 25k-hagA-MBP-specific IgA AFCs were detected in the salivary glands suspensions (Fig. 2b). As sublingual immunization with 25k-hagA-MBP elicited 25k-hagA-MBP-specific Ab responses in both mucosal and systemic compartments, establishing the nature of the T cell help supporting the responses was important. When mononuclear cells from the SMLs of immunized mice were restimulated with 25k-hagA-MBP in vitro, significant levels of proliferative responses were induced (Fig. 3a). In contrast, no significant proliferation or cytokine production was observed in hagA-immunized mice (data not shown). Furthermore, mononuclear cells isolated from SMLs immunized with 25k-hagA-MBP showed higher production
of IL-4, IFN-γ, and TGF-β (Fig. 3b). These data TCL indicate that sublingually immunized 25k-hagA-MBP-specific Th1-type and Th2-type responses are induced in SMLs. Given that sublingual immunization with 25k-hagA-MBP elicited long-term antigen-specific Ab responses in sera, we sought to determine whether these antibodies were capable of suppressing the alveolar bone absorption caused by P. gingivalis infection. Thus, mice given 25k-hagA, 25k-hagA-MBP, and PBS were infected orally with P. gingivalis 7 days after the last immunization. Mice immunized with 25k-hagA-MBP showed a significant protection and reduced bone loss caused by P. gingivalis infection (Fig. 4). In contrast, mice immunized with 25k-hagA alone did not show the reduced level of bone loss by P. gingivalis infection. These findings indicate that sublingual immunization with 25k-hagA-MBP is protective against oral infection by P. gingivalis.