ZnO-based white light-emitting diodes have also been fabricated on GaN substrate by our group previously [22, 23]. Herein, we have developed n-ZnO/p-GaN heterojunctions with the presence and absence of a NiO buffer layer. The NiO buffer layer was deposited by the see more sol-gel method prior to the growth of the ZnO nanorods and nanotubes on GaN substrate. selleck chemicals Four devices are prepared with ZnO nanorods and nanotubes on the GaN substrate: two with NiO buffer layer and the other two without. The devices were characterised by the X-ray diffraction (XRD), scanning electron microscopy (SEM), parameter analyser and the cathodoluminescence (CL) and EL techniques. Methods
Commercially available p-type GaN substrate was used in the development of the present p-n heterojunction. Prior to the growth of the n-type ZnO nanorods, a NiO buffer layer was deposited by the following sol-gel method. A sol-gel of nickel acetate was prepared in the 2-methoxyethanol having a concentration of 0.35 M, and di-ethanolamine was added dropwise under vigorous stirring at 60°C for 2 h by keeping the 1:1 molar ratio of nickel acetate and Mdivi1 chemical structure di-ethanolamine constant.
After the synthesis of the sol-gel, cleaned GaN substrate was spin coated with the prepared sol-gel three to five times for the deposition of a thin NiO buffer layer; consequently, the substrate was annealed at 180°C for 20 min. After the annealing, the sample was left in the preheated oven for 4 h at 450°C in order to have a pure phase of NiO. After the deposition of the NiO buffer layer, the substrates were spin coated two to three times with a seed layer of zinc acetate for the growth of the ZnO nanorods and likewise annealed at 120°C for 20 min. Then, the annealed substrates containing the NiO buffer layer were dipped vertically in an equimolar 0.075 M precursor’s
solution of zinc nitrate hexahydrate and hexamethylenetetramine for 4 to 6 h at 90°C. After the growth of the ZnO nanorods, the nanotubes were obtained by chemical etching using 5 M potassium chloride solution at 85°C for 14 to 16 h. Thalidomide After the growth of the ZnO nanorods and nanotubes with and without a NiO buffer layer, SEM was used to investigate the morphology of the prepared samples. The X-ray diffraction technique was used for the study of crystal quality and elemental composition analysis. The heterojunction analysis was performed using a parameter semiconductor analyser. CL and EL studies were carried out for the investigation of luminescence response of the prepared devices. For the device fabrication, the bottom contacts are deposited by the evaporation of the 20-nm thickness of nickel and the 40-nm thickness of gold layers, respectively. Insulating layer of Shipley 1805 photoresist (Marlborough, MA, USA) was spin coated for the filling of vacant spaces between the nanorods, nanotubes and the growth-free surface of the GaN substrate.