This confirms that the las system is responsible for the wrinkled colony phenotype. We used the ZK lasR mutant for further study. Genetic analysis indicates involvement of pel rather than psl We performed mutational analysis to investigate whether Pel or Psl EPS might cause wrinkling of the lasR mutant. We constructed pelA lasR and pslD lasR double mutants and compared their
colony morphology to that of the lasR mutant and the wild-type parent. A pelA lasR double mutant showed https://www.selleckchem.com/products/DAPT-GSI-IX.html a nearly smooth colony phenotype while the pslD lasR mutant showed a wrinkled phenotype like the lasR mutant (Figure 3). We evaluated the contribution of pel alone by comparing the colony morphology of a pelA mutant to the wild-type. The pelA colony phenotype was indistinguishable to that of SN-38 chemical structure the wild-type. The partial loss of wrinkles in a pelA lasR double mutant therefore indicates
inhibition of Pel by LasR. Figure 3 Genetic analysis of pel and psl involvement. Colony morphology of the ZK wild-type (WT), lasR mutant, pelA mutant, pelA lasR and pslD lasR double mutants after 5 days of growth at 37°C. To determine whether inhibition is at the transcriptional level, we measured pelA transcription in the wild-type and the lasR mutant using a pelA ‘ -lacZ transcriptional fusion inserted at a neutral chromosomal site. We harvested colonies after 3, 4 and 5 days, because a ZK lasR mutant begins to show wrinkling at day 3. We found no difference in pelA transcription in the wild-type and the lasR mutant (data not shown). This indicates that pel regulation is 3-oxoacyl-(acyl-carrier-protein) reductase at the posttranscriptional level. We attempted to investigate this possibility by quantifying EPS; however, we were unable to perform an EPS composition and linkage analysis because of insufficient amounts of purified EPS extracted from colonies required for such analysis.
Investigation of other factors associated with pel and the wrinkled colony phenotype We investigated the role of phenazines and of the tyrosine phosphatase TpbA in the observed wrinkled phenotype of a ZK lasR mutant as both modulate structural organization of P. aeruginosa PA14 colony biofilms [34, 55]. We examined the relationship between phenazine deficiency and the wrinkled phenotype through addition of pyocyanin to the agar medium. Pyocyanin supplementation did not result in loss of wrinkles in the lasR mutant (Figure 4A). Inhibition of TpbA in strain PA14 has been shown to enhance pel expression at 37°C, resulting in a wrinkled colony phenotype [34]. We therefore constructed a tpbA mutant in the ZK background and examined colony morphology. The tpbA mutant remained as smooth as the wild-type (Figure 4B). These results indicate neither pyocyanin nor TpbA are responsible for the wrinkled phenotype of the ZK lasR mutant. Figure 4 Role of pyocyanin and tpbA in the wrinkled colony phenotype. A. Colony morphology of the ZK wild-type (WT) and the lasR mutant with and without 50 μM pyocyanin. B.